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Abstract

Trained deep learning models performing
poorly on Out-Of-Distribution (OOD) datasets
have motivated researchers to study how can
models generalize. Observing objective met-
rics on held-out test data is a good first measure
to analyze if a model generalizes well. It is ar-
gued that flatter minima in loss landscape lead
to a generalized model. We experiment by em-
pirically visualizing the loss landscape of Large
Language Models to observe if smoother, flat-
ter minima correspond to a generalized model.
We notice that the model trained with SAM
(Foret et al., 2021), a fine-tuning objective im-
proves generalization and has wider optima in
the loss landspace on 4/5 GLUE tasks.

1 Introduction

Initial work on observing and visualizing one-
dimensional loss landscape in parameter space by
Goodfellow et al. (2015) showed that gradient de-
scent algorithms try to find flat optima. It deploys
a technique for traversing in the one-dimensional
space from initial weight parameters to final weight
parameters to study the nature of models. Li et al.
(2018) extends the work on visualizing loss land-
scape by working in two-dimensional parameter
space. The work introduces the ”filter normaliza-
tion” method to visualize the loss landscape in two
dimensions - which allowed for a clearer empirical
analysis of minima flatness.

Recent work by Hao et al. (2019) studied the
effectiveness of the BERT model using visualizing
the loss landscape on a variety of language datasets.
They observe that compared to training models
from scratch, BERT initializing and finetuning re-
sults in a wider optima. Recent optimization ob-
jectives like Sharpness-aware Minimization (SAM
Foret et al. (2021)) proposed an objective function
similar to gradient descent, wherein the model tries
to find weight parameters that minimize the loss
value of an entire ”neighborhood”, as opposed to a
single point.

Figure 1: Loss landscapes of baseline model and base-
line + SAM model on MRPC dataset. The loss land-
scape of the baseline+SAM model is flatter with an
average slope to the center equal to 0.019 (flatter slope)
vs 0.064 of the baseline model. Refer to Figure 3 to see
results on some more of the GLUE tasks.

Bahri et al. (2022) trained T5 (Raffel et al.,
2022) and mT5 (Xue et al., 2021) with and with-
out the SAM objective, on the SuperGLUE (Wang
et al., 2019), GLUE (Wang et al., 2018), Web
Questions (Berant et al., 2013), Natural Questions
(Kwiatkowski et al., 2019), Trivia QA (Joshi et al.,
2017) and TyDiQA (Clark et al., 2020) tasks. They
observed that SAM boosted the performance across
the board, achieving significant improvements over
baseline models.

In this work, we visualize the loss landscapes of
the vanilla BERT model and BERT + SAM model
on a variety of language datasets. This work en-
ables us to test the hypothesis - flat minima (i.e. flat
loss landscapes around the optimum parameters)
correlate to better generalization. We experiment
with the above 2 models on GLUE benchmark tasks
which we discuss in Section 3. The loss landscapes
plots are generated using Li et al.’s ”filter normal-
ization” technique (see Figures 1, 3). In addition



to visualizing, we came up with a simple formula
to quantify the flatness of sharpness using the av-
erage slope of lines from centers to corners of the
landscape, which we discuss in detail in section
2.2.

2 Data & Methodology

2.1 Data

We implement our experiments on some of the
GLUE benchmark tasks (Wang et al., 2018). GLUE
benchmark consists of various datasets for natural
language tasks that are used to train and evaluate
models. The five tasks that we experiment on are:

• COLA: It consists of English sentences and
serves to perform a binary classification of
whether the sentence is grammatically correct
or not.

• MNLI: It consists of pair of English sentences
with labels inferring textual entailment. The
first sentence of the pair is a premise and the
second acts as its hypothesis. This serves to
perform a ternary classification such that the
hypothesis either entails, is neutral, or contra-
dicts the premise.

• MRPC consists of pair of English sentences
extracted from news sources and serves to
perform a binary classification of whether the
sentences are semantically equivalent or not.

• RTE is structurally similar to MNLI, however,
the neutral and contradiction labels are col-
lapsed together as not-entailment, hence, it is
a binary classification dataset.

• SST2 consists of movie review sentences with
labels being positive or negative.

2.2 Methodology

BERT (Devlin et al., 2019) is a machine learning
model based on transformers architecture. Because
of the positional encoding and the attention mech-
anism in the architecture, the model is not con-
strained by any particular sequence of tokens. The
pre-training of BERT involves masked language
modeling, where a proportion of input tokens are
masked, and then predicted by the model. This
enables the model to learn the context in both the
forward as well as backward directions. This is
useful for providing contextualized embedding for

downstream tasks through pretraining. In our ex-
periments, we use the pre-trained BERT model for
all the tasks and fine-tune it for our use-cases.
Loss landscape is a three-dimensional space where
model parameters are on the x-y plane and corre-
sponding loss values are on the z-axis. It is com-
puted by perturbing the trained model parameters
in two orthogonal directions and computing the
loss as shown in Eq. 1

f(α, β) = L(θ + αδ + βη) (1)

where L represents the loss function, and θ rep-
resents the trained model parameters. Moreover,
δ and η represent the two orthogonal unit vectors,
which are sampled from a Gaussian distribution and
are filter-wise normalized as per Li et al. (2018).
SAM (Foret et al. (2021), Bahri et al. (2022)) objec-
tive works on the principle to minimize the sharp-
ness in the loss landscape along with minimizing
the loss itself. It aims to find a parameter w such
that the overall ”neighborhood” around it has a
low training loss. This is achieved by optimizing a
minimax function given by:

min
w

max
||ϵ||2≤ρ

Ltrain(w + ϵ) (2)

Here, the function looks for the maximum
loss around a parameter w, at a distance ϵ away,
bounded by some ρ. This way it selects the sharpest
loss in the neighborhood. Eventually, we minimize
the sharpest loss possible by globally searching
through parameters w.
Sharpness Measure is calculated using the aver-
age gradient of the lines generated using the loss
values at the center (3x3 center matrix) to the edges
in the loss landscape. We fit line equations on
the points on these projections from each center
point in the 3× 3 center matrix (see Figure 2) and
then calculate the average slope of all these lines
(3× 3× 8 = 72 lines).

3 Experiments

We visualize the loss of fine-tuned language mod-
els on the COLA, MNLI, MRPC, RTE, and SST2
tasks of the GLUE benchmark (Wang et al., 2018).
We compare findings on two models - the base-
line model - BERT and the BERT fine-tuned
with SAM objective. The setup involves loading
model weights from the pre-trained BERT model
(bert-base-uncased) on HuggingFace and
fine-tuning both models for 10 epochs. We train



GLUE Tasks
Baseline
Model

BERT
With SAM

Metric ↑
Validation

Loss ↓
Sharpness
Measure ↓ Metric ↑

Validation
Loss ↓

Sharpness
Measure ↓

COLA
(Matthew’s Correlation) 0.592 0.804 0.055 0.596 0.488 0.020
MNLI
(Accuracy) 0.840 0.826 0.037 0.839 0.989 0.072
MRPC
(Accuracy) 0.821 0.726 0.064 0.838 0.522 0.019
RTE
(Accuracy) 0.686 0.905 0.033 0.700 0.839 0.023
SST2
(Accuracy) 0.930 0.327 0.048 0.935 0.217 0.019

Table 1: Results on Validation Datasets for COLA, MNLI, MRPC, RTE and SST2. The baseline model is BERT
with AdamW (without SAM).

Figure 2: An example showing the lines considered to
calculate sharpness from one center point. This step is
repeated for the rest of the points around the center (that
touch the center point directly). The center points are
shown in the 3× 3 matrix drawn.

each model with an initial learning rate of 2e−5

and a weight decay of 0.01 with the AdamW
(Loshchilov and Hutter, 2019) optimizer. The hy-
perparameter ρ is set to 0.01 for the setup with
SAM objective. To plot loss landscapes, we use
Bernardi’s library - “loss-landscapes”. For each
model, we plot the loss-landscape for 30 “steps”,
i.e. with the trained model at the origin, the pa-
rameters are perturbed in two randomly chosen
orthogonal directions for 30 steps, to obtain a plane
of 30× 30 = 900 points.

4 Results

We can see from Table 1 that BERT fine-tuned
with SAM performs better than the Baseline model
(BERT fine-tuned without SAM) on the validation
datasets for COLA, MRPC, RTE and SST2 tasks.
We further observe that the sharpness measure cor-
roborates our results as well, i.e. for tasks that
achieved a lower validation loss and a higher met-

ric score, the sharpness measure was lower com-
pared to the baseline model. However, we see that
the baseline model performs better in the case of
MNLI where the amount of data is larger as seen
in Table 2. We hypothesize that SAM performs
better in situations where the size of data available
is relatively small. Additionally, Bahri et al. (2022)
observed that SAM tends to work best when there
is a scarcity of training data, which is what we
observe in our experiments as well.

Our results are further verified by Figures 1, 3
where, for the COLA, MRPC, RTE, and SST2
tasks, we can observe that the model fine-tuned
without SAM has an unstable neighborhood with
sharper minima, leading to poor generalization.
BERT with SAM has a relatively flatter minima,
substantiated by the model’s performance on the
unseen validation set for these tasks. This empiri-
cal analysis shows that the SAM objective in fact
finds a low-loss neighborhood, or put differently,
has a flatter optima. The top view figures in Fig-
ures 1, 3 show clearly that the SAM objective has
a low minimum loss in the neighborhood around
the trained model parameters (center of the figure).

GLUE dataset Train size Test size
COLA 8.5k 1k
MNLI 393k 20k
MRPC 3.7k 1.7k
RTE 2.5k 3k
SST2 67k 1.8k

Table 2: Size of GLUE datasets used (Wang et al., 2018)



(a) COLA (b) MNLI

(c) SST2 (d) RTE

Figure 3: Loss landscape comparison of baseline model and BERT model with SAM objective trained on GLUE
tasks. For each figure, the sharpness measure is given in parentheses and the most optimal model parameters are
present at the exact center of the figure. The orange colors represent lower loss areas and the blue color areas
represent a higher loss.

5 Conclusion

Our primary objective behind this work was to
study the hypothesis that flat loss structures are
related to higher performance. We study this hy-
pothesis in the space of natural language process-
ing. We showed that the hypothesis is indeed true
for the majority of tasks - model fine-tuned with
SAM objective performs better on a majority of
GLUE tasks. We further showed that the result-
ing loss landscapes corroborate this fact, i.e. mod-
els trained with SAM tend to have a flatter neigh-
borhood compared to the baseline model, and are

likely to generalize better on unseen data.
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