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Abstract. Owing to the current and upcoming extensive surveys studying the stellar variability, accurate and
quicker methods are required for the astronomers to automate the classification of variable stars. The traditional
approach of classification requires the calculation of the period of the observed light curve and assigning different
variability patterns of phase folded light curves to different classes. However, applying these methods becomes
difficult if the light curves are sparse or contain temporal gaps. Also, period finding algorithms start slowing down
and become redundant in such scenarios. In this work, we present a new automated method, 1D CNN-LSTM, for
classifying variable stars using a hybrid neural network of one-dimensional CNN and Long Short Term Memory
(LSTM) network which employs the raw time-series data from the variable stars. We apply the network to classify
the time-series data obtained from the OGLE and the CRTS survey. We report the best average accuracy of 85%
and F1 score of 0.71 for classifying five classes from the OGLE survey. We simultaneously apply other existing
classification methods to our dataset and compare the results.

Keywords. Deep Learning—Convolutional Neural Networks—Long Short Term Memory—Variable Star Clas-
sification.

1. Introduction

Variable stars have served a pivotal role in expand-
ing our knowledge about various aspects of the uni-
verse. These systems have been extensively used for
a vast range of studies with their implications on stel-
lar and galactic astrophysics, cosmology, and planetary
formation research. A few notable studies are estimat-
ing distances to galaxies within and beyond the Lo-
cal Group and measuring the Hubble constant (Feast,
1999; Freedman et al., 2001; Clementini et al., 2003;
Vilardell, Jordi & Ribas, 2007; Harris, Rejkuba & Har-
ris, 2010; Riess et al., 2016; Bhardwaj et al., 2016;
Ripepi et al., 2017), studying chemical composition
of different galactic regions (Smith, 1995; Luck, Kov-
tyukh & Andrievsky, 2006; Pedicelli et al., 2009; Geno-
vali et al., 2014), probing stellar structure and evolution
(Catelan & Smith, 2015; Christensen-Dalsgaard, 2016;
Das et al., 2020, and references therein), studying plan-
etary formation through pre-main-sequence stars (Bell
et al., 2013; Ribas, Bouy & Merı́n, 2015), etc.

Recent advancements in astronomical instrumenta-
tion has resulted in an avalanche of time-series data
from dedicated time-domain surveys such as Opti-
cal Gravitational Lensing Experiment (OGLE; Udal-
ski et al., 1993; Soszyński et al., 2015, 2016, 2018),

All-Sky Automated Survey (ASAS; Pojmanski, 2002),
Catalina Real-Time Transient Survey (CRTS; Drake
et al., 2009; Djorgovski et al., 2011), Zwicky Tran-
sient Facility (ZTF; Bellm et al., 2019), and upcoming
Vera C. Rubin Observatory (previously Large Synoptic
Survey Telescope; LSST Science Collaboration et al.,
2009), etc. These databases consist of multiple pho-
tometric observations with corresponding time-stamps
(light curves) for different variable sources. Classify-
ing these sources based on their light curves helps us in
understanding the responsible mechanisms behind the
variability and provides insight into their interior struc-
ture and formation. The abundance of data from the
modern surveys and relevance of variable stars to var-
ious domains of astrophysics has heightened the need
for automated methods for quick and accurate classifi-
cation of variable star light curves.

Development of automated methods for classifying
variable stars’ light curves has seen an upward trend
in recent years and has formed the core of many latest
studies. A common approach for the automated clas-
sification is to extract the periodic and non-periodic
features from the light curves and feed them to the
machine-learning (ML) classifiers. Periodic features
primarily consist of period and Fourier decomposition
parameters whereas non-periodic features are mostly
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statistical parameters (Ferreira Lopes & Cross, 2017).
An automated method developed by Debosscher et al.
(2007) uses a set of 28 features which are derived from
the Fourier analysis of the time-series. These fea-
tures are mainly the amplitudes, phases, and frequen-
cies obtained from the Fourier fit which are supplied to
Gaussian Mixture and ML classifiers for the supervised
training. Dubath et al. (2011) present an automatic
classification process using statistical parameters such
as mean, skewness, standard deviation, and kurtosis
as classification attributes. They used Random Forest
(RF) for the classification and also estimate the impor-
tance of each attribute. Richards et al. (2011) combine
the periodic features with the non-periodic features pro-
posed by Butler & Bloom (2011)). They demonstrate
the application of various ML based classifiers to au-
tomatically classify large number of variability classes.
They also attempt hierarchical classification using hi-
erarchical single-label classification (HSC) and hierar-
chical multi-label classification (HMC) using RFs. Nun
et al. (2015) offer a Python library called FATS (Fea-
ture Analysis for Time Series) intended to standardize
the feature extraction process from a given time-series.
Kim & Bailer-Jones (2016) develop a package, called
UPSILoN, which uses 16 extracted features from the
light curves and classifies light curves using Random
Forest (RF) technique. Pashchenko, Sokolovsky &
Gavras (2018) attempt the problem of variability detec-
tion using machine learning methods: Support Vector
Machines (SVM), Neural Nets (NN), Random Forests
(RF), etc. These methods are applied to 18 features
which represent the scatter and/or correlation between
points in a given light curve.

Feature based classification methods have shown
to produce results with good accuracy but these meth-
ods make an inherent assumption about the availabil-
ity of reasonable number of time-stamps for a given
light curve. For example, UPSILoN recommends hav-
ing more than 80 data points in a light curve for ob-
taining satisfactory precision and recall values. It is
known that many light curves from these surveys are
noisy and contain temporal gaps due to various reasons
related to observational constraints and survey design.
Also, the difference in cadence choices among differ-
ent surveys can potentially make the feature-extraction
(and classification) process heterogeneous and survey-
dependent. For this reason the recent works have em-
phasized the need for classification models based on
(i) the raw light curve data, or (ii) the features not re-
quiring any pre-processing such as light curve folding,
Fourier decomposition, etc. The feature extraction can
be achieved either in a supervised or unsupervised fash-
ion. These necessities are primarily driven by the fact
that the time-series data might be sparse (and therefore

not good enough to estimate the period) and can contain
gaps in the observations.

Rather than providing the hand-crafted features for
classification, recent studies focus on employing the
raw time-series data and take advantages from the
improved deep-learning (DL) frameworks. Mahabal
et al. (2017) process the raw-light curves to generate
dm-dt maps. These mappings reflect the difference
between the magnitudes (dm) and the corresponding
time-stamps (dt) for each pair in the light curve. These
differences are binned in fixed dm and dt ranges to
obtain the attributes having a uniform dimension for
each light curve. These attributes are mapped in 2-
dimensions as an image and corresponding class la-
bels are provided to the Convolutional Neural Net-
work (CNN) for training the model. Naul et al. (2018)
demonstrate the use of recurrent neural network (RNN)
based autoencoder for unsupervised and effective fea-
ture extraction. They use the latent space features
at the end of encoding layers as representative of the
light curves but with reduced dimensionality. This
step addresses the issue of light curves with varying
length which is a limitation with most ML/DL clas-
sifiers. However, they show that encoding-decoding
process is more accurate with the period-folded light
curves and therefore they use the latent space features
obtained from the folded light curves for further clas-
sification using Random Forest. Aguirre, Pichara &
Becker (2019) consider taking the difference between
consecutive time and magnitude values in a light curve
to generate two vectors, one each for time and magni-
tude. These difference vectors form a matrix with two
rows and as many columns as the number of difference
values. This matrix is passed to a 1D convolutional neu-
ral network for training the classification model where
time and magnitude difference vectors are treated as
two separate channels (similar to different color chan-
nels in an image).

In the present work, we use a deep-learning
framework called Long Short-Term Memory (LSTM;
Hochreiter & Schmidhuber, 1997) networks which are
specifically designed for handling time-series data and
propagate learning from the data to the deeper layers.
These models are capable of learning long as well as
short-term temporal features and can accommodate the
input light curves of varying length. We propose a hy-
brid network of 1D CNN and LSTM model to classify
light curves into different variability classes. Our ap-
proach is similar to the image captioning neural model
introduced in Vinyals et al. (2014) which combined 2D
CNN on images with the LSTM model. In the hybrid
model, CNN layers learn to generate the features effi-
ciently and the LSTM part carries out the task of finding
the correlations among different observations at vary-
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ing timescales of an input light curve. These are fed to
to a fully connected classification layer to predict the
variability class. For training the classification model,
we use the raw light curve data as an input to the net-
work without any feature-extraction process. This as-
pect gives this implementation an edge over the previ-
ous works. We also implement the 2D CNN method
(Mahabal et al., 2017) on our dataset where we con-
sider a modified strategy for generating the dm-dt im-
ages. We finally compare the results from the two ap-
proaches: 1D CNN-LSTM and 2D CNN.

This paper is organized as follows. In Sec. 2., we
describe the data used in this work for training/testing
the classification models and the pre-processing steps
required for 2D CNN and 1D CNN-LSTM implemen-
tations. Following this, in Sec. 3. and Sec. 4., we briefly
overview of the two deep learning techniques used for
the classification. Sec. 5. presents the results obtained
using the two approaches. Discussion on the results and
conclusions are presented in Sec 6. with an outline of
the road-map for the future work.

2. Data and Pre-processing

We obtain the archival time-series data from two sur-
veys, OGLE and CRTS, for variability classification.
Both datasets contain a large number of light curves
and the respective variability classes (labels). We select
only a few of these classes which have enough number
of distinct light curves for a stable training of the clas-
sification model. We include five variable star classes
from OGLE in our dataset, namely Classical Cepheids,
δ Scuti, Eclipsing Binaries, Long Period Variables, and
RR Lyrae. We consider only those light curves that
have at least 100 data points to ensure that the net-
work gets a sufficient number of data points to discover
the correlations between them and extract useful fea-
tures for classifying the type of variability. The OGLE
database contains 165,105 light curves for Eclipsing
Binaries but we select only 50,000 of them to avoid
their dominance in the training and keep the compu-
tation feasible (though their number is still larger than
the other four classes). The total number of OGLE light
curves belonging to all the classes are 104,006 in our
dataset. From the CRTS survey, we consider the light
curves for seven variable star classes. These include
Contact Binaries (EW), Detached Binaries (EA), three
types of RR Lyrae (RRab, RRc, RRd), Rotating Vari-
ables (RSCVn) and Long Period Variables (LPV). The
total number of CRTS light curves in our sample are
68,867. The summary of light curves selected in each
variability class from the OGLE and CRTS surveys is
provided in Table 1.

Table 1. Summary of light curves belonging to different
variability classes obtained from the OGLE and CRTS
surveys.

Class Representation Number

OGLE dataset

Classical Cepheids CEPH 2698
δ Scuti DSCT 464
Eclipsing Binaries ECLP 50000
Long Period Variables LPV 22371
RR Lyrae RRL 28473

CRTS dataset

Contact Binaries EW 30745
Long Period Variables LPV 511
Detached Binaries EA 4683
RR Lyrae type 1 RRab 2431
RR Lyrae type 2 RRc 28473
RR Lyrae type 3 RRd 502
Rotating Variables RSCVn 1522

We notice that some variability classes are over rep-
resented in terms of the number of light curves in both
datasets. However, we find that decreasing or increas-
ing their number in the training sample just affects the
training time and does not influence the classification
accuracy in any significant manner. We use the two
datasets separately for training and testing the 2D CNN
and 1D CNN-LSTM models.

2.1 Bi-dimensional histograms

2D CNN model proposed in Mahabal et al. (2017) was
applied to the light curves from the CRTS-North survey
(CRTS-N; Mahabal et al., 2012). We apply the same
method to a different dataset from the CRTS and OGLE
surveys. As the name suggests, the 2D CNN model
works on the two-dimensional datasets, like images,
whereas light curves are uni-dimensional in nature de-
picting the variation in brightness as a function of time
(Fig. 2(a)). Therefore we pre-process the light curves to
generate bi-dimensional histograms (also called dm-dt
mappings) and make them suitable for applying a 2D
CNN model. To generate bi-dimensional histograms,
we follow the same recipe as proposed in the source
paper with a few modifications in the binning criteria
as discussed below.

We compute the difference in magnitude and time
for each pair of data points in the light curve. To find
the optimal number of bins, rather than using fixed bin
ranges, we used Freedman-Diaconis rule (Freedman &
Diaconis, 1981). Freedman Diaconis estimator com-
putes bin width using the number of data points in a
sequence and interquartile range. The estimator was
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(a) CEPH (b) DSCT (c) ECLP

(d) LPV (e) RRL

Figure 1. Representative bi-dimensional histograms gen-
erated from the OGLE light curves for five variability classes.

applied to both variations, magnitude and time, individ-
ually. We adopt the Freedman-Diaconis rule as opposed
to the original binning ranges as it takes into consider-
ation that each light curve might have observations at
different times. It automatically adjusts the bin range
for a given density of points. We plot these bin sizes
as histograms for checking the variations in magnitude
and time. We finally consider the median of the maxi-
mum range in the histogram as the optimal number of
bins for both time and magnitude variations. This pro-
vides the most frequent number of bins for a given sur-
vey. We find that an optimal number of bins for the
CRTS survey for time and magnitude variations is 53
and 90 respectively. This results in an image of pixel
size 90x53. We use the same number of time and mag-
nitude bins for the OGLE survey. A few examples of
bi-dimensional histograms generated from the OGLE
light curves are shown in Fig 1.

2.2 Padded time-series light curves

The primary motivation to consider a 1D CNN model
(with LSTM) comes from the fact that the raw light
curves are one-dimensional sequences. Any rearrange-
ment of these sequences can potentially cause informa-
tion loss. However, if the variability is periodic in na-
ture and the accurate period is known, the phase-folded
light curve can be more informative than the raw light
curve. Fig. 2 shows one example of a classical cepheid
light curve from OGLE. It is clear that the raw light

(a) Raw light curve

(b) Phase-folded light curve

Figure 2. Scatter plots of a variable star belonging to
Classical Cepheids from the OGLE survey. In the top panel,
time on the X-axis is in MJD and the Y-axes in the two plots
show the magnitude scale.

curve shown in the upper panel has no discernible pat-
tern whereas the lower panel clearly shows a smooth
sinusoidal-like variation with periodicity. Phase folded
light curves have been used as an input to the classifica-
tion model in various studies. But the process of period
determination becomes challenging as well as compu-
tationally expensive in various circumstances such as
lack of points in the light curves, insufficient cover-
age over different phases, etc. Therefore a classifica-
tion model should be able to use the raw light curves
without phase-folding or rearranging them.

We propose a 1D CNN model that accepts the light
curves without any pre-processing. The light curve data
contains variable-length sequences but the computation
of the classification model requires all input sequences
of the same length. To make all light curves of the
same length, we use zero padding at the end of the light
curves. This step ensures that the shape of all input
light curves remains consistent.
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3. Convolutional Neural Networks

Convolutional Neural Networks (CNN or ConvNets;
Hinton & Salakhutdinov, 2006; Bengio, 2009; Lecun,
Bengio & Hinton, 2015) have been widely accepted
as an excellent tool to identify patterns in astronom-
ical data from diverse sub-domains (Dieleman, Wil-
lett & Dambre, 2015; Fabbro et al., 2018; Metcalf
et al., 2019). These have been utilized in Astronomy
for numerous classification and regression problems.
Many studies have shown that a so-called deep-learning
framework like CNN performs better than conventional
machine learning algorithms (Kim & Brunner, 2017;
Sharma et al., 2020).

A CNN is a kind of deep neural network commonly
used for identifying features and patterns in imagery
data. It consists of an input layer, an output layer,
and multiple hidden layers. The hidden layers include
convolutional layers, activation layers, pooling layers,
fully connected layers, and normalization layers. Con-
volutional layers convolve the input image array with
the filters and pass the outputs to the succeeding layer.
Each convolution layer outputs a new set of activations.
Pooling layers are used to decrease the size of the pa-
rameters by downsampling the features. Maxpooling is
a type of pooling where the maximum value of a section
of input is used in the next layer. This helps in gener-
alizing the features and the reduction in features help
CNN train quicker. Average pooling is another pool-
ing technique where the average of the pooling window
is used in the succeeding layer. Fully connected layers
learn the features created from previous layers. Neu-
rons in fully connected layers are connected to all ac-
tivations of the previous layers. Normalization layers
normalize the activations of the previous layers which
helps in reducing overfitting. In this work, we use the
same CNN architecture as prescribed in Mahabal et al.
(2017). The schematic diagram of the architecture is
shown in Fig. 3.

4. 1D CNN - LSTM

Inspired from the visual cortex system of animals
(Hubel & Wiesel, 1968; Fukushima, 1980), CNNs are
mainly used for learning local spatial features and the
correlations among the neighbouring points in 2D sig-
nals like images. However, in recent years, the ap-
plications of CNNs have also been extended to other
domains using one-dimensional data, e.g. spectral and
time-series analysis, natural language processing, pro-
tein sequences, etc . Kiranyaz et al. (2019) provide a
careful and detailed overview of 1D CNNs and discuss
their applications to several problems. 1D CNNs have

shown excellent capabilities to learn patterns and gen-
erating features from fixed length 1D data like time-
series. We combine 1D CNN with the LSTM networks
for classifying light curves.

Long Short Term Memory (LSTM) networks are a
type of Recurrent Neural Networks (RNNs) having the
ability to remember sequences for a long period of time.
LSTM networks are used for learning from the sequen-
tial data like time-series, speech, and video (Graves &
Schmidhuber, 2005; Wang & Jiang, 2015; Karim et al.,
2018; Brunel et al., 2019). LSTM networks possess
the property of selectively remembering past sections
of the data. LSTM networks use three types of gates,
namely update gate, forget gate, and output gate. The
update gate is used in the current state. The forget
gate is used to filter past outputs and the output gate
is used to compute the final output. LSTM networks
overcome the vanishing gradient problem by using the
forget gate which helps in using previous outputs. This
property helps LSTM networks to have an edge over
conventional feed-forward neural network and Recur-
rent Neural Networks (RNNs). One example of LSTM
networks applied to an Astronomical problem is pro-
vided in Zhang & Zou (2018). The authors implement
the LSTM models for time-series prediction from the
light curves. Evaluation of the results based on the
mean squared error showed promising prediction for
the future points in the time-series. A similar model
has been shown to preform well in Czech, Mishra &
Inggs (2018) for classifying transient radio frequency
interference.

In this work, a hybrid network of 1D CNN and
LSTM is used to classify the variable star light curves.
LSTMs with 1D CNNs help the classification model to
learn long and short term patterns, correlations, and de-
pendencies in the input light curve. The convolutional
layers in the network create features from the input se-
quences. They learn to create these features in a way
to reduce the error in the prediction. These features
are then used by the LSTM to produce its output ac-
tivations. The output of the final LSTM layer is flat-
tened. The flattened sequence of features is passed to
fully connected layers that learn these features. The fi-
nal softmax layer predicts the variable star classes with
respective probabilities. The proposed networks con-
sists of total 10 layers with 4 convolutional layers, 2
Maxpooling layers, 2 LSTM layers, and 2 fully con-
nected layers. We use a kernel size of 3 for first 2 con-
volutional layers and 5 for last 2 convolutional layers.
The filter size of convolutional and LSTM layers are
in increasing fashion. It is followed by two fully con-
nected layers containing 1024 and 512 neurons respec-
tively. The final ‘softmax’ classification layer has five
units for each of the five variability classes from OGLE.
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Figure 3. Schematic diagram showing the architecture of Convolutional Neural Network for the OGLE dataset. Different
layers in the network are shown as different block and the layer names are indicated at the top of each block. The input
images are of shape 90x53x3. First conv layer uses a kernel size of 3x3 but the subsequent layers uses a bigger kernel size
of 5x5 to find bigger patterns. The same architecture is used for the CRTS dataset except the final classification layer which
instead contains seven nodes corresponding to seven variablity classes present in the CRTS.

Full architecture of the model is presented in Fig. 4.

5. Results

For training the classification models described in
Secs. 3. and 4., we use a single NVIDIA GeForce GTX
1060 6GB graphics processing unit. We use CUDA
enabled Tensorflow (Abadi et al., 2015) environment
for training the models in python. Since the number of
light curves in different classes are highly imbalanced,
therefore we give extra weights to the less presented
class while training. The weights are assigned in accor-
dance with the numbers of the light curves. To check
the overall performance of the classification models, we
use the standard metrics: precision, recall, accuracy,
and F1 Score.

As described in Sec. 2., we need to generate the
bi-dimensional histograms for providing as inputs to
2D CNNs. We use histogram2d function from python
library NumPy to prepapre the Bi-dimensional his-
tograms. We use 60%, 20%, and 20% of the ligth-
curves for training, validation, and testing the classifi-
cation models respectively. While dividing the dataset
into training, testing, and validation samples, we ensure
that the ratio of the variable classes remain the same
across all the three data portions. We use Adam opti-
mizer (Kingma & Ba, 2014) function with the learning
rate fixed to 0.0002.

Application of 1D CNN-LSTM model does not re-
quire any pre-processing except the padding of the light
curves. 1D CNN-LSTM has the advantage of using a
smaller number of free parameters to perform classifi-
cation. This could be a favourable approach in situa-
tions where the data is big and computing resources are

Table 2. Results of classification using 2D CNN on bi-
dimensional histograms prepared from the OGLE and the
CRTS survey light curves.

Dataset Accuracy Precision Recall F1 Score

OGLE 97.5% 0.81 0.91 0.85
CRTS 74.5% 0.56 0.52 0.54

limited. We use the same splitting criteria of 60%-20%-
20% for the two datasets.

5.1 2D CNN on OGLE and CRTS

We train and validate the 2D CNN model on 80% data
from the OGLE and CRTS for multi-class classification
problem where the number of classes are five and seven,
respectively. The model is trained for 100 epochs and
each training epoch takes about 165 seconds. Test-
ing the CNN model on the remaining 20% data from
OGLE gives an overall accuracy of 97.5%. For the
CRTS dataset, we obtain an accuracy of 74.5%. As
the number of light curves belonging to δ Scuti are on
a lower side, we experiment with the classification us-
ing only the other four classes and get an overall accu-
racy of 99%. We note the similar increase in the accu-
racy for the CRTS dataset after removing classes with
lesser number of light curves: LPV and RRd. The clas-
sification metrics using CNN for OGLE and CRTS are
shown in Table 2. The normalized confusion matrix for
OGLE is presented in Fig. 5).

5.2 1D CNN-LSTM on OGLE and CRTS

For applying 1D CNN-LSTM model, we examine the
distribution of the number of observations in light
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Figure 4. Schematic diagram showing the architecture of 1D CNN-LSTM model for the OGLE dataset. The input sequences
are padded with zeroes to maintain the constant length of 359 in the OGLE survey and 546 in the CRTS survey for all light
curves. Each block represent different type of layers as indicated by the header. The same architecture is used for the CRTS
dataset except the final classification layer which instead contains seven nodes corresponding to seven variability classes
present in the CRTS.

Figure 5. Classification results on the test set from OGLE using the 2D CNN (left) and 1D CNN-LSTM (right) models in
the form of a normalized confusion matrix. Numbers in each cell represent the fraction of light curves belonging to a true
and predicted class. Cells are color-coded according to the numbers in the cell.
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Table 3. Results of classification using 1D CNN-LSTM on
the OGLE and the CRTS survey light curves.

Dataset Accuracy Precision Recall F1 Score

OGLE 85.0% 0.64 0.81 0.71
CRTS 66.6% 0.46 0.53 0.49

curves in our dataset. We find that the distribution
peaks at 359 for the OGLE and 546 for the CRTS. This
means that most light curves in OGLE have 359 data
points. To make all the light curves of equal length, the
ones with lesser number of observation are padded with
zeros at the end of the sequence. The light curves hav-
ing more number of observations are clipped at 359th
observation assuming that these observations will have
sufficient information to classify the type of variability.
We adopt the same strategy for the CRTS dataset.

We use the faster CuDNNLSTM layer which runs
on GPU. The batch size of 32 was used for training 1D
CNN-LSTM. The average time for one training epoch
is around 75 seconds. Each classes is given weights
according to the number of members in that class. We
obtain average accuracy of 85% and 67% for the OGLE
and the CRTS lightcurves, respectively. The results of
1D CNN-LSTM on both the datasets are presented in
Table 3. The confusion matrix for the OGLE dataset is
presented in Fig. 5.

6. Conclusions and Discussion

We present two approaches for classifying variable
stars using Deep Learning techniques. While the 2D
CNN model requires generating dm-dt mappings or
bi-dimensional histograms, 1D CNN-LSTM does not
require any pre-processing (except padding the light
curves to maintain the uniform length for all the light
curves) and is a step forward towards classifying light
curves without providing engineered features or pre-
processing. To classify bi-dimensional histogram im-
ages, we use the standard and well-established classi-
fication tool, the ConvNets, which perform very well
on the OGLE dataset. We find that the classification
performance on the CRTS dataset is suboptimal. In the
second approach, we use a combined network of 1D
CNN and LSTM to classify light curves. This approach
does not require any pre-processing which saves a lot of
time to generate bi-dimensional histograms. Also, the
total training time using 1D CNN-LSTM is reduced by
a factor of half as compared to the 2D CNN model. De-
spite gaining on the overall computation time front, we
realize that the performance of 1D CNN-LSTM model
is not at par with the 2D CNN approach. Lower accu-
racy hints that there could be potential shortcomings in

the 1D CNN model which bars its performance as the
feature extractor. It is also possible that the LSTM lay-
ers are unable to correlate the observations at varying
time lengths. This aspect of disentangling the problem
with the two types of layers needs further investigation.

The degraded performance on the CRTS dataset
as compared to the OGLE dataset is a common diffi-
culty faced by both the models. We note that ∼86% of
the light curves in the CRTS dataset come only from
the two classes: the contact binaries (EWs) and RR
Lyrae Type 2 (RRc). Since these two classes have very
similar sinusoidal light curves with similar periodic-
ity, most classification algorithms fail to distinguish be-
tween these two classes. It should also be noted that
the CRTS dataset contains three RR Lyrae sub-classes:
RRab, RRc, and RRd. RRab and RRc stars pulsate in
the fundamental and first-overtone mode, respectively,
whereas RRd stars pulsate in mixed mode between the
fundamental and first overtone. The light curves for
these classes also look very similar which makes the
classification among these classes more difficult.

Despite giving a lesser accuracy, we are able to
show that the proposed 1D CNN-LSTM model has
the potential to perform the task of classifying vari-
able star light curves without providing the processed
data. Moreover, we see that 1D CNN-LSTM gives bet-
ter results than the 2D CNN approach for certain classes
in the CRTS dataset. For example, 1D CNN-LSTM
performs better in separating out the light curves from
EWs and RRc classes. For these two groups, 2D CNN
is able to classify 42% RRc light curves correctly and
labels wrongly 50% of the RRc light curves as contact
binaries. On the other hand, 1D CNN-LSTM model
shows marginally better accuracy of 45% for the RRc
light curves and classifies incorrectly 41% light curves
as contact binaries. About ∼8% of the RRc light curves
are classified as RRab. We make the same observa-
tion for the light curves from the RRab and EW classes.
Only 29% of the RRab light curves are correctly classi-
fied by 2D CNN and 51% light curves are wrongly clas-
sified to EW class, whereas 1D CNN-LSTM classifies
55% of the light curves correctly and assigns wrongly
only 22% of the light curves as EW. Similarly, while
only 69% of the LPVs are correctly classified by the
2D CNN model, the 1D CNN-LSTM model achieves
an accuracy of 80% in classifying them. These results,
summarized in Table 4, highlight the superiority of the
1D LSTM-CNN model over 2D CNN in distinguishing
very similar looking light curves.

As a future scope of this work, we would experi-
ment more with the network architecture by optimizing
the model hyperparameters, which requires more com-
putational resources. We would also like to explore
the capability of the hyperparameter optimized model
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Table 4. Comparison of classification results for three
variability classes from the CRTS dataset using 2D CNN and
1D CNN-LSTM models. The two rows for each true class
represent the correct classification (to the actual class) and
mis-classification(to the other class indicated in the second
row) percentages, respectively.

True
Class

Predicted
Class

Classification models

2D CNN 1D CNN-LSTM

RRab RRab 29% 55%
EW 51% 22%

RRc RRc 42% 45%
EW 50% 41%

LPV LPV 69% 80%
RRab 13% 6%

in classifying light curves from different surveys and
examining their performance in case of the sparse light
curves. These tests would confirm the robustness of the
model against various differences among surveys, e.g.,
cadence, instrumentation, etc. A more sophisticated ap-
proach to classify light curves could use a combination
of two parallel CNNs, a 1D CNN for the light-curves
and another 2D CNN for the science (or difference) im-
ages. The features generated using these two networks
can be merged and transferred to the final classifica-
tion layer. The 2D CNN in this alternative approach
could provide the required assistance to the 1D CNN-
LSTM model to surpass the achieved accuracy by a
stand-alone 1D CNN-LSTM model.
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